

Comprehensive Large Array-data Stewardship System
(CLASS)

Software Development Guide

(Version 1)

October 1, 2002

CLASS Software Development Guide

Revisions

Version Description of Version Date Completed

Draft V1 Initial draft 7/22/02

1.0 Incorporated CPMT input – approved by CPMT 10/01/02

10/1/2002 4:46 PM i

CLASS Software Development Guide

Review & Approval

Software Development Guide Review History

Reviewer Version
Reviewed

Signature Date

Constantino Cremidis/CSC

Alexander Kidd/OSDPD

Geof Goodrum/NCDC

Carlos Martinez/Marada
Corporation

Ted Habermann/NGDC

Eric Kihn/NGDC

David Vercelli/NESDIS

Robert Mairs/NESDIS

Anita Konzak/CSC/QMO

10/1/2002 4:46 PM ii

CLASS Software Development Guide

Table of Contents

1 Introduction... 1

1.1 General development approach... 1
1.2 Project organization .. 2
1.3 Development environment.. 3
1.4 Related documents .. 4

2 Release planning ... 4
2.1 Scope definition .. 5
2.2 Effort estimate... 5
2.3 Release schedule ... 8
2.4 Metrics collection.. 9

3 Software development process ... 9
3.1 Process overview .. 9
3.2 Peer review checklists... 13
3.3 Metrics collection.. 15

4 Design & Coding standards .. 16
4.1 Design goals.. 16
4.2 Coding standards... 18

5 Testing approach... 18
5.1 Levels of testing.. 18
5.2 Test documentation... 19
5.3 Problem tracking... 19
5.4 Metrics collection.. 19

6 Software documentation standards ... 19
6.1 Software Design Documentation .. 19
6.2 Software Description .. 21
6.3 Configuration Change Requests ... 22
6.4 Problem Reports.. 24

Attachment A – Process Measurement Form ... 25
Attachment B – Peer Review Procedure... 28
Attachment C – Estimation Worksheet... 36
Attachment D – Acronyms ... 37

10/1/2002 4:46 PM iii

CLASS Software Development Guide

 Table of Figures

Figure 1 - Release life-cycle ... 2
Figure 2 - CLASS Project Organization ... 3
Figure 3 - CLASS Technical Environments ... 4
Figure 4 - Sample Estimation Worksheet ... 7
Figure 5 - Development Process ... 10
Figure 6 - Configuration Change Request Form... 23

10/1/2002 4:46 PM iv

CLASS Software Development Guide

1 Introduction
This software development guide describes the standards and procedures to be followed
throughout the development of the Comprehensive Large Array-data Stewardship System
(CLASS). The CLASS development project includes several separate development
groups from different organizations and different geographic areas. To ensure consistent
quality and compatibility of the various components of CLASS developed by this
distributed team, all members of the CLASS development team will follow the standards
and procedures defined here. The CLASS Quality Management (QM) personnel will
provide oversight and guidance for all development groups in the application of the
CLASS processes, as defined in the CLASS QM Plan.

This section of the guide describes the overall development environment for CLASS,
including organization, technology, and baseline documents. Subsequent sections
describe the processes, standards, and procedures for release planning, development
(detailed design and coding), testing, and documentation.

This document will be updated throughout the development life of CLASS to incorporate
lessons learned and process improvements. The CLASS Project Management Team
(CPMT) must approve any updates to this document. Once approved, updates will be
distributed to all members of the CLASS development team and posted in the CLASS
online library.

1.1 General development approach
The overall goal for CLASS is to provide one place for access to all NOAA/NESDIS
data. Specifically, CLASS is currently scheduled to support data archiving and retrieval
for seven major campaigns over the next several years:

• NOAA and Department of Defense (DoD) Polar-orbiting Operational Environmental
Satellites (POES)

• NOAA Geostationary-orbiting Operational Environmental Satellites (GOES)

• National Polar-orbiting Operational Environmental Satellite System (NPOESS)

• The NPOESS Preparatory Program (NPP)

• National Aeronautics and Space Administration (NASA) Earth Observing System (EOS)

• NOAA NEXt generation weather RADAR (NEXRAD) Program

• European Meteorological Operational Satellite (Metop) Program

To meet these goals in a cost-efficient manner, CLASS is being developed in an
evolutionary manner, re-using existing system functionality as possible. The data archive
and distribution functionality is based on the Satellite Active Archive (SAA) system,
currently supporting NOAA Polar-orbiting Operational Environmental Satellites.

10/1/2002 4:46 PM 1

CLASS Software Development Guide

The overall methodology used in the development of CLASS is iterative and release-
based. The iterative approach allows for the continued refinement of detailed
requirements and design as new campaign requirements are defined. Implementation is
release-based in order to minimize risk to the operational baseline as the system evolves.

Figure 1 shows the high-level process flow for the release life-cycle.

Design &
Code

System
Integration

& Test

Promote to
Operations

Planning for
Next Release

Release
Planning

Figure 1 - Release life-cycle

1.2 Project organization
The CLASS project is distributed across several development groups that are
organizationally and geographically distinct. The project is managed by a joint project
management team (the CPMT) and by a common set of baseline documents, standards,
and processes. The CLASS System Engineering Team (SET) includes representatives
from each development group and coordinates the technical direction for CLASS. Figure
2 shows the project organization. The charter for the CPMT, and the roles and
responsibilities of key team members, are defined in the CLASS Master Project
Management Plan.

10/1/2002 4:46 PM 2

CLASS Software Development Guide

NESDIS CIO

CPMT

De

(B

De

(Fr

D

(S

Lead
Integrator

SET

In
T

(Su

CLASS Management
Oversight Group

Figure 2 - CLASS Project Organiz

1.3 Development environment
Each development group maintains its own local developm
and unit and component integration testing. A common so
maintained in the system integration and test environment
code for CLASS. When a component has been developed
turned over to the system integration and test team for inte
environment. Figure 3 shows the overall flow of software
project. Details of each step are defined in later sections o

10/1/2002 4:46 PM
NGDC
velopment
Teams

oulder, CO)
NCDC
velopment
Team

emont, WV)
OSDPD
evelopment

Team
uitland, MD)
ation

ent environment for cod
urce control system is

, which provides the base
 and tested locally, it is t
gration into the CLASS
 changes within the CLA
f this guide.
System
tegration &
est Team
itland, MD)
ing

line
hen
test
SS

 3

CLASS Software Development Guide

Beta Test
Environment

Operational
Environment

(Suitland)

NCDC Test
Environment

Operational
Environment
(Asheville)

Boulder
Development
Environment

West Virginia
Development
Environment

System
Integration

Environment

Suitland
Development
Environment

Figure 3 - CLASS Technical Environments

1.4 Related documents
All CLASS baseline documents are stored in the CLASS online library, available in the
CLASS Project Development Team space in NOAAForge (class1.nesdis-hq.noaa.gov).
These include the following documents:

• CLASS Configuration Management Plan
• CLASS Quality Management Plan
• CLASS Master Project Management Plan
• CLASS Test plan
• Design documentation
• Software Description documentation
• Software Standards for Information Processing Division (IPD), June 30, 2001

2 Release planning
The success of the release-based approach is largely determined during the release
planning effort. The CPMT must allocate requirements to each release in a manner that

• Addresses campaign needs and schedules
• Groups related design and code changes so as to minimize code disturbance
• Provides for maximum generalization of functionality

The major activities that take place during release planning are described in this section.
These activities may be iterative during the course of defining a release: an initial set of
requirements is allocated to the release, the effort for implementation is estimated, and
the resulting schedule for delivery is determined. If the resulting schedule is not

10/1/2002 4:46 PM 4

CLASS Software Development Guide

acceptable, the requirements allocation is revisited to change the scope of the release to
one that can be completed in the required timeframe, or the resources allocated to the
release are increased to meet the target completion date.

2.1 Scope definition
CLASS system and allocated requirements are maintained in the DOORS requirements
management tool. Associated with each allocated requirement are the source (campaign
or other source) and the required operational date. The CLASS CM plan describes the
process for managing new or proposed requirements.

Near the end of development of a release, the CPMT, SET, and Lead Integrator begin
assessment of the scope for the next release:

• Existing Level III configuration change requests (CCRs) are reviewed to verify
the allocation to the next release.

• Requirements previously allocated to the next release time period are reviewed to
determine if the release allocation is still desirable.

o Related requirements that comprise a single functional capability are
grouped together. Each group should include only requirements that are
so tightly coupled that it is not reasonable to implement one without
concurrently implementing all in the group.

o All requirements that have not been implemented yet are reviewed to
determine if any are logically related to those groups planned for this
release. If any are identified, they are added to the appropriate grouping.

o A Level III CCR is created for each functional change, and entered into
the CCR tool. All changes are documented in CCRs before
implementation begins to facilitate tracking of the change status.

The release scope includes the CCRs defining new capabilities to be implemented and
existing problems that will be corrected in the release. The SET constructs the initial
release list, which is then reviewed by the CPMT for consistency with current priorities.
The list is then assessed for effort and schedule, as described in the following sections,
and revisited as necessary. When all parties – development groups, test team, and
management – are satisfied that the allocated work can be completed in the desired
timeframe, with acceptable quality, the release scope is documented by the list of
allocated CCRs. The CPMT has final authority on release content.

Any changes to scope (i.e., inclusion of additional CCRs or elimination of CCRs)
proposed by the development groups during the release implementation must be reviewed
by the integration test team and approved by the CPMT.

2.2 Effort estimate
In order to meet the CLASS schedule and quality commitments, accurate effort estimates
are a key input to the release planning activity. The accuracy of software estimates is
driven by two key considerations:

10/1/2002 4:46 PM 5

CLASS Software Development Guide

• The level of detail of understanding of the requirement to be implemented or
problem to be corrected, and

• The historical organizational experience with similar implementation efforts
(similar in application, platform, programming language, etc.)

The level of detail of understanding will change during the system life cycle. Initial
effort estimates will be less accurate than those derived after detailed design is
completed. Estimates will be reviewed at least twice during a release, and more
frequently as warranted: once at initial release planning, and once after the developer has
completed requirements analysis and design. The initial release plan should include
schedule contingency based on expected changes in the effort estimate after design. If
changes in estimates later in the release suggest that the schedule will not be met, the
CPMT will review the release scope and schedule to determine if the schedule should be
adjusted, the scope revised, or additional resources applied.

The historical experience for CLASS is strong, since the system is based on existing
systems and supported by experienced developers. In some cases, the new capability
may be sufficiently unlike existing functionality, or the group assigned to that new
capability new to the project, so that the estimate is less certain than other parts of the
system. These areas should be identified during the estimation process and monitored
closely during development for deviation from the estimates. When necessary, outside
experts may be consulted to provide the experience needed for a reliable estimate.

The lead integrator prepares a preliminary rough estimate for each CCR when it is
received. Each development group is responsible for reviewing and refining the
estimates for CCRs assigned to their group, during the release planning phase. The
estimation process used for CLASS includes the following major activities, to be
performed for each CCR.

• Partition the requirement or problem into the lowest level objects or functions
possible. These may be fairly high-level at the initial estimate, and more detailed
for later re-estimates.

• For each type of object, identify the “estimating unit” (e.g., modules, lines of
source code (SLOC), user interface screens).

• Estimate the number of units for each object or function, based on previous
releases or similar projects.

• Estimate the complexity (high, medium, low) for each object or function.
• Define the expected productivity (hours per unit) for each level of complexity,

based on previous releases or similar projects.
• Compute the effort estimate for each object or function, based on the expected

productivity and units estimate for that object or function.
• Sum the effort estimates for the objects or functions for each CCR.
• Sum the effort estimates for the release.

The estimator completes a worksheet for each CCR. Figure 4 shows a sample worksheet:
productivity numbers are examples only; actual numbers will be defined by the software

10/1/2002 4:46 PM 6

CLASS Software Development Guide

development leads and refined during the life of the CLASS project based on actual
experience. Appendix C contains a blank worksheet.

CLASS Estimation Worksheet

Estimating Unit Characteristics

Complexity Productivity Estimate
(hours/unit)

ID

Estimating Unit

Low Medium High
FN Function 8 40 120
SC UI Screen 4 24 40

SC OB UI Screen Object .5 2 4
DSI Delivered Source Instruction .5 1 2

Work Estimate

Partition ID
Estimating

Unit ID
Complexity Size Effort

(Hours)
New capability A FN M 3 120
New capability A UI SC H 1 40
New capability A UI SC L 5 20
Modify screen B SC OB M 3 6
New function C DSI M 200 200

Total Effort Estimate 386

Figure 4 - Sample Estimation Worksheet

The following detailed characteristics should be considered in preparing the estimate.

• Decompose requirements into objects or functions.
• Identify like objects/functions and group into “develop once” category.

10/1/2002 4:46 PM 7

CLASS Software Development Guide

• Identify Non-Developmental Item (NDI) or reusable objects/functions.
• Identify Activity Controller Path definitions or system configuration
• Estimate code size for each object/function to be developed.
• Estimate adaptation code for adjusting NDI or reusable code, if appropriate.
• Estimate initialization, termination, and error handling code for each process or

partial process.
• Estimate new data definitions needed to support each process or partial process.
• Estimate screen/form handling logic and definition statements.
• If any tool needs to be developed (e.g., test drivers, development tools), estimate

code size for each tool.

The SET supports the development groups in preparation of the estimates and reviews the
estimates on completion.

2.3 Release schedule
Each Technical Area Lead (TAL) prepares a detailed MSProject plan for their part of the
release, based on input from the development group. This plan includes all tasks,
milestones for each task, resources assigned to each task, and dependencies between
tasks. The tasks should be categorized according to the CLASS Work Breakdown
Structure (WBS), and the work defined using a standard Earned Value Method, as
documented in the CLASS Project Management Plan.

The following types of development activities should be included in the release plan:

• Initial analysis, design, code, and development testing
• Review of design, code, test plans, test results, and documentation
• Rework, for problems found during the integration and test phase
• Documentation

Integration and system test tasks include

• Test planning
• System builds
• Test execution
• Retesting of software where problems were found in initial testing
• Documentation of test results

If there are dependencies on the order in which new capabilities are tested, these must be
defined in the release plan.

Plans should also include allocation of effort (both development and system testing) for
analysis of new CCRs that are received during the release period.

The CLASS project control office rolls up the individual group plans into one master
release plan, working with the CPMT to resolve any conflicts encountered. The CPMT
reviews and approves the final release schedule.

10/1/2002 4:46 PM 8

CLASS Software Development Guide

2.4 Metrics collection
At the start of each release, each group completes a process database measurement form.
This form includes project description information and effort estimates for the release
activities. At the end of the release, actual data related to the release size, effort, and
quality are recorded. These metrics provide a historical baseline for use in planning
future releases. Attachment A shows the measurement form for data collection.

Each TAL provides input to the Release Notebook for each release that contains the
following:

• The planned release scope (list of CCRs)
• The release estimates, including the basis for estimates
• The initial release plan
• Release actuals (collected during and at the end of the release):

o Scope (CCRs included in the delivery)
o Effort
o Schedule
o Quality measures (see Attachment A, and Sections 3 and 5)

• Lessons learned and recommendations for future releases

3 Software development process
After the scope of the release has been defined and approved by the CPMT, each CCR is
assigned to one or more developers for implementation. Development activities include

• Requirements analysis to ensure that the requirement or problem is understood
• Detailed design to define the implementation approach
• Coding of the new or changed functionality
• Unit and component testing of the new or changed code
• Peer review

After the development group has tested the function, it is turned over to the CMO for
promotion to the integration and test environment, for integration into CLASS and formal
testing. Independent integration and testing activities are addressed in Section 5. This
section describes the process and procedures for the development activities. Coding
standards are defined in Section 4.

3.1 Process overview
In order to identify and correct problems as early in the development process as possible,
the CLASS project will use a series of peer reviews as each function is implemented.
Figure 5 shows the process flow for development and the points where peer review is
conducted. This section describes the steps in the process. Attachment B describes in
detail the procedure for peer reviews, describing each different type of review. The
checklists for each review are included in Section 3.2.

10/1/2002 4:46 PM 9

CLASS Software Development Guide

Peer
Review

Turnover
to CM

Documentation

Code

Peer
Review

Peer
Review

Unit
Test

Unit
Test

Developer
Integration Testing

Development
Testing

Unit
Test

. . . Peer
Review

Peer
Review

Function Level
Requirements

Analysis & Design

Initiation

Figure 5 - Development Process

10/1/2002 4:46 PM 10

CLASS Software Development Guide

Initiation
The process is initiated when the software development lead assigns a CCR to a
development team, which includes at least two members to facilitate peer review.
Typically, one member will do all the development for a particular CCR, and the other
will perform the peer review. Based on the complexity of the CCR, the software
development lead will designate the level of peer review required for that CCR, and
identify any additional peer reviewers, if necessary. For large, complex, or critical CCRs,
a formal Work Product Inspection (WPI) may be required at the completion of design,
and group reviews required for code and test. For minor changes to the code (e.g.,
correcting an error in a single line of code), only a one-on-one review at the completion
of developer testing may be required.

When the CCR is assigned to a development team, the development lead changes the
CCR Status to Assigned and the Supervisor to the lead assignee.

Function Level Requirements Analysis and Design
When the assigned developer begins work on the CCR analysis, the developer changes
the CCR Status to Work in Progress. The developer reviews the CCR and gets
clarification on any requirements. The developer then develops a detailed design for
implementation, including identifying any new or modified code, user interface changes,
and other interface changes. The developer re-estimates the effort required for
implementation. If the effort estimate is significantly higher than the original estimate
developed during release planning, the developer notifies the software development lead,
so that the CPMT can determine if the effort should remain included in the current
release and if additional resources are required.

When the developer has completed analysis of the requirements and design, and is ready
to begin coding, the developer schedules the design peer review, as defined at initiation.
The peer review checklist is included in Section 3.2. Any problems identified during the
peer review are recorded and corrected before coding begins (see Section 3.3 for Metrics
collection).

When the peer review is completed, and problems resolved, the reviewer completes the
peer review section of the CCR.

Code
After the reviewer signs off on the completed design review, the developer can begin
coding. Coding standards for the languages used in CLASS are discussed in Section 4 of
this guide.

The developer checks out the modules that will be modified, completes coding for new or
modified modules, and ensures a clean compile. The developer may conduct some
preliminary unit testing prior to the peer review, but should not complete full testing.
Conducting testing prior to the review delays the review, and results in rework when
testing needs to be repeated after problems are found during the review.

10/1/2002 4:46 PM 11

CLASS Software Development Guide

For large or complex functions that involve many new or modified modules, the
developer may complete only a subset of the modules and schedule a peer review for that
subset. The scope of an individual review should be small enough to be conducted in one
or two hours, and large enough to include closely related modules. The peer review
checklist is included in Section 3.2.

Any problems identified during the peer review are recorded and corrected before the
reviewer signs off on the review (see Section 3.4 for Metrics collection). When the
review is complete, and any problems resolved, the reviewer completes the code review
section of the CCR.

Development Testing
Developers conduct two levels of testing for each CCR: unit testing of each new or
changed module, and development integration of the completed CCR. The plan for unit
testing is reviewed during the code review, and should specify any test routines and test
data that are needed. The plan for development integration is reviewed during the design
peer review.

The developer should complete as much testing as possible before committing the
changes into the source code control system. Each night, the development system is
rebuilt incorporating all new committed changes for that day. This nightly build provides
the foundation for all development testing across the project. Developers should ensure
that all code compiles and builds cleanly in their local environment before committing
the changes to the controlled library. If the code checked in by a development team
causes the nightly build to fail, the TAL will work with that team to help determine the
cause of the failures and to improve the team’s development practices.

The developer conducts final development testing after the nightly build has integrated
the changes into the development configuration.

During the development test period, the developer also reviews any documentation
related to the change and updates documentation as necessary, including completing
development information on the CCR. Section 6 addresses documentation standards.

At the completion of development integration, a final peer review is conducted to verify
successful completion of the testing and documentation. This review certifies that the
software is ready for the independent integration and test team. The checklist for the test
readiness peer review is included in Section 3.2. Any problems identified during the peer
review are recorded and corrected before the software is turned over (see Section 3.4 for
Metrics collection).

When the test readiness peer review is complete, the developer notifies the software
development lead that the software is ready for turnover. The developer changes the
CCR Status to Pending – Supervisor Action, and the Supervisor to the Software Manager.

10/1/2002 4:46 PM 12

CLASS Software Development Guide

The software development lead verifies that all peer reviews have been completed and all
metrics have been captured, and reassigns the CCR to the CMO for promotion to
Integration.

3.2 Peer review checklists
The checklists for each of the peer reviews for the development process are provided
below.

Design Review Checklist

 Design Review Checklist
By signing this Review form, the assigned Verifiers are indicating that the product has been
reviewed for the following:

X Review Criteria Comments
 1. The documentation conforms to documentation

standards.

 2. The Product Requirements (or Project Definition)
are satisfied where applicable to Product Design.

 3. Consideration was given to reliability and
maintainability.

 4. Due consideration was taken of experience from
previous developments.

 5. The design can be implemented with the available
technology.

 6. The design has been validated for the required
functionality.

 7. The design includes or references acceptance
criteria.

 8. The design conforms to the appropriate statutory
and regulatory requirements.

 9. The design conforms to the CLASS design
standards.

 10. Test procedures and data have been defined for
integration testing.

If the development team (developer and reviewer) identifies exceptions to the above
checklist for a specific review, the reviewer documents the exceptions in the comment
section, indicating waiver required. Waivers must be approved by the responsible
development group lead and the lead integrator.

10/1/2002 4:46 PM 13

CLASS Software Development Guide

Code Review Checklist

Code Review Checklist
By signing this Review form, the assigned Verifiers are indicating that the product has been
reviewed for the following:

X Review Criteria Comments

 1. The code implements the requirements stated in the CCR

 2. Code accurately represents the detailed design as
documented

 3. There is adequate error checking and message logging
for changes made in this CCR

 4. Files and database tables are accessed correctly

 5. Redundant and unexecutable code is avoided

 6. Nested loops beyond six levels are avoided

 7. Use of variable names, terminology, and identifiers
follows CLASS standard

 8. Environment variables are adequately defined. Hard
coded quantities are avoided in every code unit in the CCR

 9. Use of practices that bind the code to unique device
characteristics is avoided (platform / hardware
independent)

 10. Every code unit is sufficiently readable and self
explained. Comments are adequately provided

 11. Every file and function has a prolog correctly formatted
for automatic extraction into reference documentation.

 12. Every file has a version control identifier.

 13. Every code unit compiles cleanly

 14. The CCR test plan is valid for the current release

 15. The developer has provided a complete list of code
units for this CCR

 16. The developer has accounted for all environment files,
and test data needed to test

 17. The developer has a valid plan for testing the changes
made under this CCR

 18. The developer has clear instructions for build

 19. The developer has clear instructions for testing

10/1/2002 4:46 PM 14

CLASS Software Development Guide

If the development team (developer and reviewer) identifies exceptions to the above
checklist for a specific review, the reviewer documents the exceptions in the comment
section, indicating waiver required. Waivers must be approved by the responsible
development group lead and the lead integrator.

Test Readiness Review Checklist

Test Readiness Review Checklist
By signing this Review form, the assigned Verifiers are indicating that the product has been
reviewed for the following:

X Review Criteria Comments

 1. Have all outstanding items from previous reviews
been resolved?

 2. Was required testing successfully completed?

 3. Is the CCR complete?

 4. Is all related software ready for promotion?

 5. Was a representative set of tests successfully run
under peer review?

 6. Does the delivery contain the required data files?

 7. Does the delivery include any needed special build
or operating instructions?

 8. Have all the resolved change requests been
identified in the delivery?

 9. Is there a complete, correct, and clear identification
of any outstanding problem reports?

 10. Is all required documentation ready for delivery?

 11. Does the user documentation clearly and
completely describe how to use the software in its
operational environment?

 12. Have security requirements been met?

If the development team (developer and reviewer) identifies exceptions to the above
checklist for a specific review, the reviewer documents the exceptions in the comment
section, indicating waiver required. Waivers must be approved by the responsible
development group lead and the lead integrator.

3.3 Metrics collection
At turnover, each TAL updates the Process Measurement Form (see Attachment A) to
record the results of the peer reviews. Additionally, the TAL updates the release
notebook with actual software size and effort data.

10/1/2002 4:46 PM 15

CLASS Software Development Guide

4 Design & Coding standards
This section provides design and coding standards for CLASS development, for the most
commonly used programming languages. Use of any language other than those listed
here must be approved by the SET, and coding standards documented.

4.1 Design goals
Maintainable software and simple operation are the basic design goals for CLASS. Some
specific goals are listed below and the design and implementation approaches that have
been adopted to meet these goals are discussed.

Easy addition of new data types

• Software is general and parameterized. Parameters that define file and record
structures for ingest purposes are contained in the database, so that the same
software can be used to process many different types of files. Likewise, the
content and appearance of the web pages in the user interface are largely
controlled by parameters stored in the database, so that new data types and search
criteria can be added easily.

• Application software is object-oriented. While some software, particularly in the
Ingest system, is specific for certain data types, there are many common and
reusable classes that facilitate the creation of new specialized classes through
composition and inheritance.

Easy addition of new functions

• The application architecture is highly modular. CLASS is divided into major
components (e.g., SAA), which are divided into subsystems. The more complex
subsystems, such as Ingest, Recall, and Delivery, each consists of several
independent processes supervised by the Activity Control system. Independence
means that each process performs a function based solely on the contents of the
item-descriptor that it receives, with no knowledge of the other processes that
have handled or that will handle that item-descriptor. This approach enables the
implementation of new functionality in new processes with minimal impact to
existing code.

• The Activity Control system supports the easy modification of processing paths
and the addition of new processes. Types of items to be processed (e.g., data sets,
orders, line items) and processing paths (activities and triggers) are defined in
database tables that can be easily modified.

• The availability of utility classes facilitates the development of new processes. An
Activity Control client class provides methods that enable any process to obtain
item-descriptors in priority order, update activity status, and re-queue item-
descriptors. There are classes that perform common functions such as querying
and updating database tables, creating log messages in standard formats, and
transferring files.

• Adherence to a standard design facilitates the development of new processes. All
transient processes that run under the Activity Control system have the same high-
level design, essentially:

10/1/2002 4:46 PM 16

CLASS Software Development Guide

 Initialize activity logging
 Open database connection
 DO WHILE there are items to process
 Get next item from queue
 Process item
 IF error
 Write error message to log
 Put item back in queue for later re-processing
 ELSE
 Let ActivityController know that this activity is completed
 ENDIF
 ENDDO

There are utility classes that are tailored to perform the common functions within
this design pattern.

Automatic processing and recovery

• The ProcessStarter (a component of the Activity Control System) automatically
starts processes when they are needed. The ProcessStarter itself is periodically
restarted by cron to ensure continuous operation.

• The Activity Control System automatically restarts failed processes
• The Activity Control System automatically re-queues items that may have been

incompletely processed because of system failure
• Software is designed to recover automatically when resources are temporarily

unavailable. The Activity Control system maintains a queue of item-descriptors
waiting for each process. If a process cannot complete an action on an item
because some resource is unavailable, e.g., a file system is filled up, that process
returns the item to the queue, initiates cleanup, and periodically attempts to
complete the failed action. Thus the unavailability of disk space may bring a
process effectively to a halt, and this may cause other file systems to fill up and
bring other processes to a halt, but item-descriptors remain queued and all
processing resumes automatically once the root problem is resolved.

Standard activity and error reporting

• Application processes write activity and error messages in standard formats to a
set of log files. A Log Monitor program periodically reads the log files and sends
messages of specified types via e-mail to designated operators.

• The Activity Control System monitors the activity of each process and the
progress of each item through the system. It issues operator alerts (via the log file
and Log Monitor mechanism) for any process that appears to be inactive or slow,
or any item that appears to be stalled at some point in its processing path.

Centralized monitoring and control

• The Activity Control system supports centralized control of distributed
processing. Process parameters (run permissions, hosts, number of instances of

10/1/2002 4:46 PM 17

CLASS Software Development Guide

each process) are defined in database tables that operators can change to halt or
resume processing at any point or to reconfigure the system.

• A web browser operator interface enables operators to monitor processing, restart
or cancel orders, modify runtime parameters in the database, and control
processing through the Activity Control tables.

4.2 Coding standards
CLASS follows the coding standards defined in the Software Standards for Information
Processing Division (IPD). The following programming languages are used in CLASS:
C++, Java, Perl, and JavaScript. Use of any other language must be approved by the
SET.

5 Testing approach
This section briefly describes the overall testing approach. More details on CLASS
integration and testing are included in the CLASS Test Plan and Test Procedures.

5.1 Levels of testing
Testing for CLASS can be categorized into two areas: development testing and
independent system integration and test.

For development testing, the developer of a software change conducts unit level testing
and integration of the modules related to the specific change. This testing does not
usually require formal test plans and procedures, although the general planned test
approach is reviewed during the design and code peer reviews, as discussed in Section 3.
At the discretion of the software development lead, for more complex or critical
functions, a formal plan and procedures may be required. In that case, a peer review of
the plan and procedures will also be conducted.

An independent system integration and test team conducts formal integration testing of
all software changes after the developer has completed development testing and the
software development lead has approved the software for turnover to the test team.
These tests are conducted according to the approved test plan and procedures, as
allocated to the release, and include

• System build and verification in the Integration environment
• Promotion to the Beta Test environment for functional and stress testing of new

functionality, and regression testing
• Promotion to the NCDC Test environment for deployment testing and NCDC

readiness testing

At the successful completion of system integration and testing, the Lead Integrator
approves the release and notifies the CPMT that the software is ready for promotion to
operations. The CPMT makes the final approval of promotion to operations. With
CPMT approval, the CMO promotes the system to the Operational environment, as
defined in the CM Plan.

10/1/2002 4:46 PM 18

CLASS Software Development Guide

5.2 Test documentation
The system test procedures to be followed for a release are identified in the test
procedures documentation. The test identification is entered into the release test report,
along with the results of each test. In the event that a function fails a test, the failure is
recorded as well as results of subsequent re-tests. This test report is included in the
Release Notebook at the conclusion of testing.

5.3 Problem tracking
Problems encountered during development testing are corrected by the developer as they
are identified and do not need to be recorded.

Problems encountered by the system integration and test team are recorded as Problem
Reports (PRs), and the software development lead is notified of the need for correction.
The status of PRs is tracked during the System Integration and Test phase: the CMO
prepares weekly (or on request) reports for the Lead Integrator and development team
leads. As each PR is corrected, the test team retests the function.

If the CPMT approves, based on the severity of the problem, it is possible to promote the
new release to operations with outstanding unresolved PRs. In that case, the PRs are
converted to CCRs, since they now represent a requested change to the new operational
baseline.

5.4 Metrics collection
At the completion of system testing, each development group updates the Process
Measurement Form (see Attachment A) to record the results of the test phase.
Additionally, the TALs update the Release Notebook with updated software size and
effort data, and the test report.

6 Software documentation standards
This section describes the standards for software design documentation and CCRs and
PRs. Standards for documenting the source code are included in the Software Standards
for IPD.

6.1 Software Design Documentation
The following documentation outline is the standard format for CLASS design
documentation. Sections not relevant to a particular design should be included and
marked as N/A. Additional information should be added as necessary to convey an
adequate understanding of the design. If a different format is more useful to conveying a
complete picture of the changes being made and the impact to the other system
components, the developer should obtain approval from her or his development lead for a
revised format.

After the design is implemented, much of the overview documentation presented here,

10/1/2002 4:46 PM 19

CLASS Software Development Guide

including diagrams, will be incorporated into the overview sections of the software
description documents in the online CLASS library. The design details should be
reflected in the in-line comments and source file prologs that are extracted to produce the
software reference documentation. Descriptions of database table changes will be
incorporated into the database documentation.

1. Requirements
State the requirements that are driving this enhancement or change

2. Subsystem Design Overview
Discuss the subsystem design or design changes at a high level. Include, as appropriate:

• Subsystem processes affected - what is the function of each process and how is
that functionality being altered

• Database changes
• New or modified user interface pages
• New or modified interfaces

3. Activity Control Paths
Define new paths or path modifications for processes that run under the Activity Control
System.

4. Parameter and Configuration Files
Describe new files or modifications to existing files that are used in operations, other than
executable programs. For example: site maps, style sheets, XSP files, environment files,
e-mail template files. If pipeline definitions in the site map are affected, discuss and
illustrate each new or modified pipeline.

5. Storage Areas
Identify new permanent or temporary storage areas required. Estimate space
requirements. Indicate any special maintenance procedures (e.g., cache cleanup
procedures).

6. Log Message
Give examples of new log messages to be generated. Identify log directory in which
these messages will be kept.

7. Interprocess Communication
Describe formats of new or modified interprocess messages, search results files,
visualization product files.

8. Database Tables
Describe additions or changes to the structure and content of the database:

• Structure - Describe new tables and modifications to existing tables. Identify
column names, variable types, contents of each column

• Content - Describe new sets of parameters to be added, e.g., to define new
activity control paths or to ingest new data types. Identify all tables affected.

10/1/2002 4:46 PM 20

CLASS Software Development Guide

9. Program Design
Provide the following for each affected process in the subsystem:

• Process functions
• Diagrams - Include whatever diagrams might be useful in clarifying the workings

of the process, e.g., class association diagrams, state transition diagrams, activity
diagrams

• Class design - Identify major attributes or methods that are being added or
modified. Describe the input and output for each method. Describe the function
of each method, using PDL for complex functions.

10. Operational Characteristics
Discuss ways in which operators may monitor and control the new or modified system.
Discuss the circumstances under which an operator may be required to intervene to
resolve problems.

11. Test Plans
Discuss plans for testing the changes. Identify special environments, tools, or data that
will be required for testing.

12. Requirement Mapping
Map requirements to design, i.e., provide a table in which each requirement is mapped to
the above sections that describe design elements driven by that requirement.

6.2 Software Description
The software description section of the online library describes the software as built. The
documentation of a subsystem is generally formatted as follows:

• Functions and Interfaces: High level description of functions and interfaces;
context diagrams

• Design: Overview of subsystem design; separate subsections for overviews of
major components:

o Program A
o Program B
o Etc.

• Special Interfaces and Formats: Formats of external files, messages, data
structures

• Implementation: Locations of source and runtime files; build procedures;
programmer Notes

• Operation: Required environment; notes on execution and monitoring
• Diagrams: Class Association Diagram
• Reference Documents

o C++ Class Hierarchy
o C/C++ Classes, Structs, Unions
o C/C++ Class and Struct Members
o C/C++ File List

10/1/2002 4:46 PM 21

CLASS Software Development Guide

o C/C++ File Members
o Script List
o Java Class Hierarchy
o Java Class Fields and Methods
o Java Package Index

All the Sections except Reference Documents shown in the above outline contain
overview information that must be supplied by the software developers. Some sections
(e.g., Formats, Operation, Diagrams) may be omitted if not applicable.

The Diagrams section of the document contains links to Tau-UML diagrams and other
diagrams, preferably in PostScript format.

The Reference Documents section contains only information generated by the tools
doxygen, scriptdocgen, and javadoc.

The locations of the online document files, tools available for generating reference
documentation, and the procedures for updating the Software Description documentation
are presented in the online library under Software Documentation Standards and Tools.

6.3 Configuration Change Requests
Figure 6 shows the standard Remedy tool CCR form. The CCR originator fills out the
initial part of the CCR when he or she submits the change request. The developer
completes the description of the change when the change is implemented:

• Each file that is modified must be noted in the CCR along with the version of that
file. This is done automatically by CVS when the file is committed. The list of
runtime files that will be moved into the operational environment must be added
to the CCR. This information goes in the Runtime Files field of the form.

• In the Instructions field of the form the developer should include:

o Build instructions
o Customizations required
o Any other instruction that the developer considers necessary.

• The Developer documents all changes done in the Implementation field of the

Form.

• The Developer writes a test plan and updates the Test field with it. Expected test

results should also be provided.

10/1/2002 4:46 PM 22

CLASS Software Development Guide

Figure 6 - Configuration Change Request Form

The CLASS Configuration Management Plan provides additional details on the use of the
Remedy CCR tool.

10/1/2002 4:46 PM 23

CLASS Software Development Guide

6.4 Problem Reports
The Problem Reports use the same tool and form as the CCRs, and are distinguished by
the PR indicator only. As in the CCR, the developer must identify each file that is new or
changed in correcting the problem.

10/1/2002 4:46 PM 24

CLASS Software Development Guide

Attachment A – Process Measurement Form

10/1/2002 4:46 PM 25

CLASS Software Development Guide

10/1/2002 4:46 PM 26

CLASS Software Development Guide

10/1/2002 4:46 PM 27

CLASS Software Development Guide

Attachment B – Peer Review Procedure

1. OWNER
This procedure is derived from Computer Sciences Corporation (CSC) Civil Group (CIV)
defect prevention procedures, for use on the CLASS project. Any recommendations for
improvement should be submitted to the CLASS Quality Management Office.

2. PURPOSE
This procedure defines the peer review and work product inspection (WPI) process,
including methods, roles, and responsibilities. Peer Reviews and WPIs are scheduled and
conducted throughout the system development life cycle. The purpose of these reviews
and inspections is to remove defects from the work products early and efficiently. The
reviews and inspections involve a methodical examination of the work product by the
author’s peers to identify defects and areas where changes are needed.

3. RESPONSIBILITIES

3.1 Development group lead
The development group lead is responsible for defining the level of review required for
each element of a release (e.g., Peer Review or WPI), and assigning an individual or team
to conduct the review. The development group lead also arbitrates any conflict between
the developer and reviewer.

3.2 Quality management
Quality management (QM) personnel are responsible for ensuring that the Peer Review
and WPI process are conducted in accordance with the project’s documented procedures
and standards. QM is also responsible for periodically auditing the project data repository
to ensure the inclusion of metric data associated with these reviews/inspections and to
verify closure of Peer Review and WPI action items.

3.3 Project Technical Personnel
These personnel are knowledgeable in the objectives, principles, and methods of the Peer
Review and WPI process as well as their assigned roles in the process. These roles
include

• Facilitator—Leader of the review responsible for managing all aspects of the
review meeting. The facilitator prepares the objectives of the review, notifies the
participants about the review schedule, assigns a recorder, oversees the orderly
conduct of the review, ensures that review minutes are prepared and distributed,

10/1/2002 4:46 PM 28

CLASS Software Development Guide

and provides defect and action item follow-up to ensure closure in a timely
fashion.

• Recorder—Responsible for documenting all discrepancies and defects found,
suggested improvements, and assigned action items.

• Author—Responsible for generating the material being reviewed and
implementing changes to the material as required.

• Reviewers—Cognizant representatives of author’s peer group, which can include
project personnel from Systems Engineering, Software Engineering, QM, or
Software Test. Reviewers are responsible for technical review of the material and
feedback on all defects discovered.

4. INPUT
Input for Peer Reviews and WPIs is as follows:

• Project standards and checklists for the product being reviewed/inspected
• Peer Review/inspection process
• Project plans and schedules:

o Program Management Plan (PMP)
o Project QM Plan
o Review/inspection schedule

• Product requirements and acceptance criteria
• Product(s) to be reviewed/inspected

5. PROCESS
Any type of technical or management product may be reviewed or inspected, whether it
is deliverable to the customer or internal to the project and whether it is in an
intermediate or final state. The goal of the Peer Reviews and WPIs is to find and correct
errors as early in the system life cycle as possible. These reviews and inspections are
interactive, with a focus on constructive criticism. Peer Reviews and WPIs focus on the
work product being reviewed and not on the author of the product.
PRs are normally conducted to certify products before proceeding to the next phase of
development. PRs may involve only two people or a group. WPIs are structured
walkthroughs used to verify correctness and completeness of products or processes.
Inspections are typically used when feedback is required from cross-functional or cross-
organizational groups, when the scope of the feedback is relatively large, when the
product or process is relatively complex or has a far-reaching impact, or when education
of a group is necessary. In WPIs, the manager of the work product being inspected may
participate in a technical capacity, but the manager does not use the results of the review
or inspection to evaluate the performance of the work product author.
The specific products that undergo PR and WPI are identified in the project’s defined
process and scheduled as part of the project planning activities.

10/1/2002 4:46 PM 29

CLASS Software Development Guide

Common features of the PR and WPI process include
• A triggering event defined within the authorizing document, or a request from

functional management, QM, or the developers
• Identification of the review participants and their roles in the review
• An established schedule, with notification sent to affected personnel
• A completed product to be reviewed or inspected according to the established

requirements and standards
• The actual review or inspection, with action items assigned for any unresolved

issues or questions identified during the review; all action items have a designated
assignee and required completion date

The specific processes associated with the one-on-one and group PRs and the WPIs are
described in the following subsections. Table 5-1 identifies the review attributes
associated with these three types of reviews and provides selection criteria guidance.

5.1 One-on-One Peer review
A one-on-one PR involves only two people and is intended to provide feedback on
identified defects in a product. The reviewer is normally a co-worker of the product
author who is knowledgeable in the area being reviewed. The author’s manager is not
usually the reviewer, as the review is intended to evaluate the product, not the author.
One-on-one PRs are appropriate in situations where the review attributes meet the criteria
shown in Table 5–1.

Table 5–1. PR and WPI Selection Criteria

Review
Type

Review Attribute

One-on-One PR

Group PR

WPI

Provide feedback to developer(s) early in the
development cycle (e.g., prototype material)

 x x

Provide immediate feedback to developer(s) (e.g.,
unit detail design)

x

Individual feedback x
Group feedback x x
Material simple, straightforward x x

Material complex, technically risky x x
Review scope small (e.g., single unit) x x
Review scope large (e.g., system interfaces) x x
Customer involved x
Determine alternate approaches x x
Minimal resources x
Predistribution of material required x x

10/1/2002 4:46 PM 30

CLASS Software Development Guide

Review
Type

Review Attribute

One-on-One PR

Group PR

WPI

Preparation required x x
Product certification x x
Product verification x x
Product maturity check x x
Product progress check x x
May require multiple reviews x
Precursor to formal review x x

5.1.1 Preparing a One-on-One Peer Review
One of the first steps in a one-on-one PR is to identify the reviewer. The manager or
technical lead may make the assignment, or the author may ask a co-worker on the
project to be the reviewer. If the project has very few members, such as one or two
people, the reviewer may be from a similar project rather than from the same project.
Once the reviewer has been identified, the author and reviewer establish a schedule for
the review process. The schedule may be determined by a set turnaround time or a
milestone date. The author provides the review material to the reviewer.
5.1.2 Conducting a One-on-One Peer Review
The reviewer may look at the material alone or with the author. The reviewer evaluates
the material against any certification criteria (often expressed with a checklist) defined
for that product type as guidance for evaluating the product. A checklist provides
evaluation guidance for indicators of quality, helping the reviewer to focus on the types
of errors likely to occur with a particular type of product.
Any review comments are returned to the author, who then revises the product. The
rework is then reviewed by the reviewer. This continues until the reviewer is satisfied
with the product and can certify it. If the author and reviewer do not agree on the
identification of a problem or how to resolve it, it may be brought to a third person for
resolution or documented as an action item. The inability to come to consensus may
indicate that a one-on-one review is inappropriate for this product.
The reviewer may determine that the changes being reviewed are extensive or complex
enough to require the group PR method. In that case, the one-on-one PR is ended, and the
group PR is scheduled.
5.1 3 One-on-One PR Follow-Up and Products
The output of the review is a certification that the product or set of products has
successfully passed the PR criteria. The certification is available as an audit trail. In
addition, any errors and issues that were outside the scope of the review are logged for
later corrective action.

5.2 Group Peer review

10/1/2002 4:46 PM 31

CLASS Software Development Guide

Group PRs consist of the product author(s), a group facilitator, and the reviewers, who
are peers of the person(s) whose product(s) is being reviewed. Group PRs are appropriate
in situations where the review attributes meet the criteria shown in Table 5–1. Group PRs
consist of three phases: preparation, conduct, and post-review. The following subsections
describe the activities associated with each of these phases, and Table 5–2 summarizes
the roles and responsibilities by phase.
5.2.1 Preparing a Group Peer Review
During the preparation phase, the author(s) of the material to be reviewed ensures that the
material is complete, obtains management approval to schedule the review, and informs
the facilitator that the material is ready for review. After receiving notification, the
facilitator identifies the review team, schedules the review, prepares a package of review
material, and notifies participants. Review material is distributed to reviewers in advance
of the PR. The review team reviews the product distributed to them and prepares their
questions and concerns prior to the review.
5.2.2 Conducting a Group Peer Review
The second phase in the PR process is the conduct of the meeting. The function of the
meeting is to identify and record defects found by the reviewers during their independent
review preparation. The PR meeting is highly structured. The main focus is the
identification, not the correction, of defects.

Table 5-2. Group PR Roles and Responsibilities

Role
Phase

Facilitator

Author(s)

Reviewers

Preparation • Verify review material readiness
• Schedule meeting
• Distribute list of review material
• Notify participants of meeting

time/place
• Notify author if additional material is

required
• Notify participants if meeting must be

rescheduled
• Conduct technical inspection of

material submitted for review

• Notify lead engineer
that material is
ready for review

• Provide list of
material to facilitator

• Provide any
additional material
needed by facilitator

• Conduct technical
inspection of material
before meeting using
recommended review
checklist(s)

• Alert facilitator of
additional material
needed to supplement
review

• Document review
findings, comments,
questions, and
suggestions

• Record all technical
review time

10/1/2002 4:46 PM 32

CLASS Software Development Guide

Role
Phase

Facilitator

Author(s)

Reviewers

Conduct • Chair the PR meeting
• Participate in meeting discussions
• Keep meeting focus on immediate

task
• Ensure that all concerns are

discussed and recorded (an additional
review participant can be designated
as meeting recorder)

• Review defects list
• Determine whether a reinspection is

necessary

• Participate in
meeting
discussions

• Present all defects,
questions, and concerns
discovered during early
review of the material

• Participate in meeting
discussions

Post-
Review

• Generate and distribute meeting
minutes, defects, and action items list

• Monitor status of defects generated in
review

• Generate final defects report upon
resolution of defects

• Gather, record, and update PR
project metrics

• Resolve all defects
identified

• Resolve any action
items assigned

• Resolve any action items
assigned

During the PR itself,

• An overview of the products under examination is presented (by the author[s] or
the facilitator).

• Each product is reviewed in detail to allow discussion among the review team.
• The facilitator encourages questions from the review team to ensure all issues and

concerns become visible and are elaborated upon.
• The facilitator, or a recorder appointed by the facilitator, ensures that all the

deficiencies, issues, and suggested improvements are correctly noted and
documented findings are distributed within a reasonable time frame to the
complete review team.

The defects and action items are recorded if there is a consensus among the participants
that a defect has been identified. All defect resolutions are the responsibility of the author
of the material.
5.2.3 Peer Review Follow-Up and Products
In the final phase of the PR process, the facilitator produces and distributes the review
documentation, including meeting minutes, defects recorded, and action items lists. The
author(s) resolves all defects recorded during the conduct phase and any action items
assigned. During this phase, the facilitator also ensures that the action items and defects
assigned are completed in a timely manner. After all defects and action items are
resolved, the facilitator distributes a final defect/action item report with the change in
disposition status.

10/1/2002 4:46 PM 33

CLASS Software Development Guide

5.3 Work Product Inspection
WPIs are used when feedback is needed from a large group. This inspection is conducted
as a structured walkthrough for certification review by peers, managers, or the customer
and for educating others. WPIs are appropriate in situations where the review attributes
meet the criteria shown in Table 5–1. WPIs consist of three phases: preparation, conduct,
and post-review. The following subsections describe the activities associated with each of
these phases.
5.3.1 Preparing a WPI
During the preparation phase, the author(s) of the material to be reviewed ensures that the
material is complete, obtains management approval to schedule a review, and informs the
facilitator that the material is ready for review. When changed material is being reviewed,
the author gives the rationale for the change (such as providing a problem report
number). After receiving notification, the facilitator identifies the review team, schedules
the review, and notifies participants.
5.3.2 Conducting a WPI
At the inspection, the author(s) provides a detailed presentation of a product or portion of
a product. The author walks the reviewers through the product to review its contents,
discuss its details, and identify errors and issues. The review material is generally
provided at the time of the walkthrough, though it may be provided in advance. Defects
identified and issues raised at the inspection are recorded for resolution outside the
review.
If the inspection is used to certify a product, then the product is also reworked after the
walkthrough to address the errors and issues. Errors and issues that are outside the scope
of the review do not need to be resolved, only logged, to grant the certification.
5.3.3 WPI Follow-Up and Products
If the inspection is used to certify a product, the defects identified are reworked by the
author(s) and the rework is examined by the facilitator. This continues until the facilitator
is satisfied with the product and certifies it. The output of the review is certification that
the product or set of products is ready for the next phase of the life cycle. The
certification is available as an audit trail.
If the inspection is used for verification of completeness and correctness, the facilitator
produces and distributes the meeting minutes, defects recorded, and action item lists. The
author(s) resolves all defects recorded during the conduct phase and any action items
assigned. During this phase, the facilitator also ensures that the action items and defects
assigned are completed in a timely manner. After all defects and action items are
resolved, the facilitator distributes a final defect/action item report with the change in
disposition status.
With both kinds of inspections, any errors and issues that are outside the scope of the
review are logged for later corrective action.

6. OUTPUT

10/1/2002 4:46 PM 34

CLASS Software Development Guide

The output of one-on-one PRs includes the updated product with identified problems
resolved and a certification record in the project’s certification repository. The output of
the group PR and WPI process is minutes documenting the deficiencies, issues, suggested
improvements, and action items. These minutes should include

• Names of attendees
• Meeting duration time
• Amount of material reviewed
• List of defects and/or action items
• Total number of defects
• Number of major defects
• Number of minor defects
• Total preparation time for review team
• Total preparation time for facilitator
• Disposition of elements reviewed (e.g., accept, verify rework, reinspect)

Additionally, the project data repository must be updated to account for the conduct of
the review and for the resources expended performing the review.
A PR or WPI is complete when all open defects and actions items that have been
documented are assigned a resolution type of anything other than “open.”

7. TAILORING
• Number of participants – PRs and WPIs should be limited to a small number of

participants. Typically, a review team includes three to seven subject matter
experts and one facilitator.

• Review scope and meeting duration – PRs and WPIs should have an absolute time
limit, typically no longer than 60 to 90 minutes. This time limit helps to determine
the amount of material chosen for each review. If the meeting goes over the
allocated time, follow-up meetings should be scheduled.

• Checklists or certification criteria – For PRs and when the inspection is used for
certification, the standard against which the product is being evaluated must be
established. How and where (e.g., software development folders) the certification
is to be recorded must also be identified.

• Material re-review – Requirements for re-review should be set by each project
and be based on the severity and number of defects found in the initial review of
the material.

10/1/2002 4:46 PM 35

CLASS Software Development Guide

Attachment C – Estimation Worksheet
CLASS Estimation Worksheet

Estimating Unit Characteristics

Complexity Productivity Estimate
(hours/unit)

ID

Estimating Unit

Low Medium High

Work Estimate

Partition ID Estimating
Unit ID

Complexity Size Effort
(Hours)

Total Effort Estimate

10/1/2002 4:46 PM 36

CLASS Software Development Guide

Attachment D – Acronyms

CCR Configuration Change Request
CIO Chief Information Office
CLASS Comprehensive Large Array-data Stewardship System
CM Configuration Management
CMO Configuration Management Office
CPMT CLASS Project Management Team
CVS Concurrent Versions System
DoD Department of Defense
EOS Earth Observing System
GOES NOAA Geostationary-orbiting Operational Environmental Satellite
IPD Information Processing Division
Metop European Meteorological Operational Satellite Program
NASA National Aeronautics and Space Administration
NCDC National Climatic Data Center
NESDIS National Environmental Satellite, Data, and Information Service
NEXRAD NOAA NEXt generation weather RADAR Program
NGDC National Geophysical Data Center
NOAA National Oceanic and Atmospheric Administration
NPOESS National Polar-Orbiting Operational Environmental Satellite System
NPP NPOESS Preparatory Program
OSDPD Office of Satellite Data Processing Division
PAL Project Area Lead
POES NOAA and DoD Polar-orbiting Operational Environmental Satellites
PR Problem Report
QM Quality Management
SAA Satellite Active Archive
SET Systems Engineering Team (CLASS)
TAL Technical Area Lead
WBS Work Breakdown Structure
WPI Work Product Inspection

10/1/2002 4:46 PM 37

	Introduction
	General development approach
	Project organization
	Development environment
	Related documents

	Release planning
	Scope definition
	Effort estimate
	
	Estimating Unit Characteristics
	Work Estimate
	Partition ID

	Release schedule
	Metrics collection

	Software development process
	Process overview
	Peer review checklists
	Metrics collection

	Design & Coding standards
	Design goals
	Coding standards

	Testing approach
	Levels of testing
	Test documentation
	Problem tracking
	Metrics collection

	Software documentation standards
	Software Design Documentation
	Software Description
	Configuration Change Requests
	Problem Reports

	Attachment A – Process Measurement Form
	Attachment B – Peer Review Procedure
	Attachment C – Estimation Worksheet
	
	
	Estimating Unit Characteristics
	Work Estimate

	Attachment D – Acronyms

